CHEMISTRY OF BLEOMYCIN. XI* THE STRUCTURES OF THE TERMINAL AMINES

Sir:

In the previous paper¹), we presented six new components of bleomycin, demethyl A_2 , $A_{2'}$ -a, $A_{2'}$ -b and $A_{2'}$ -c, $B_{1'}$ and B_6 . Of these components, the terminal amines of demethyl A_2 , $A_{2'}$ -a and $A_{2'}$ -b have been described in our review on bleomycin²). Recently the total structure of bleomycin was proposed.³) The components differ only in the terminal amine structure. In this communication, the structures of the terminal amines are presented (Table 1), thus describing the new bleomycins.

Bleomycin A₁, A₂, demethyl A₂, A_{2'}-a, A_{2'}-b

Table 1. The terminal amines of bleomy	ycins
--	-------

Bleomycins	Terminal amines
A	NH2 - (CH2)3 - SO-CH3
Demethyl A2	NH2 - (CH2)3 - S - CH3
A2	$NH_2 - (CH_2)_3 - S = (CH_3)_2 X$
A _{2'-a}	$NH_2 - (CH_2)_4 - NH_2$
A2'-b	$NH_2 - (CH_2)_3 - NH_2$
A2'-c	NH2-(CH2)2N
	H H
Α5	NH2-{CH2)3-NH-(CH2)4- NH2
A ₆	NH2-{CH2}3-NH-(CH2)4-NH-(CH2)3-NH2
B _i ,	NH3
B2	NH NH ₂ -(CH ₂) ₄ -NH-C-NH ₂
B ₄	NH NH NH2-(CH2)4-NH-C-NH-(CH2)4-NH-C-NH2

and $A_{2'}-c$, A_5 , A_6 , B_1' , B_2 and B_4 were isolated in sufficient amount for chemical study. They were individually hydrolyzed with $6 \times HCl$ at $105^{\circ}C$ for 24 hours. The terminal amines were easily isolated by passage through Dowex 1×2 (OH⁻) column, since they were found in the effluent, while the amino acid components were adsorbed on the resin. The terminal amines were precipitated with picric acid and purified by recrystallization. The terminal amines of A_1 , A_2 , demethyl A_2 , $A_{2'}$ -a, $A_{2'}$ -b and $A_{2'}$ -c, A_5 , A_6 and B_2 were respectively identified as 3-methylsulfinylpropylamine²⁾, 3aminopropyldimethylsulfonium salt⁴⁾, 3-methylthiopropylamine²⁾, 1, 4-diaminobutane⁴⁾, 1, 3diaminopropane²⁾, histamine, spermidine⁴⁾, spermine⁴⁾ and agmatine⁴⁾ by elemental analysis, chromatographic and spectroscopic comparisons with authentic samples.

The structural relation of the terminal amines of A_1 , A_2 and demethyl A_2 suggested the possible interconversion of bleomycins A_1 , A_2 and demethyl A_2 .

$$A_2 \xrightarrow[]{CH_3I} demethyl A_2 \xrightarrow[]{H_2O_2} A_1$$

Copper-chelated bleomycin demethyl A_2 was methylated with methyl iodide in methanol at $42^{\circ}C$ for 48 hours to afford bleomycin A_2 in good yield, while pyrolysis of A_2 under reduced pressure at 100°C for 24 hours yielded demethyl A_2 in70 % yield. Treatment of demethyl A_2 with one equivalent of hydrogen peroxide in aqueous solution at 0°C for 5 minutes afforded A_1 without any side reactions.

The terminal amine of B_1 could not be detected by ninhydrin reaction on paper and thin layer chromatograms. Behavior on CM-Sephadex chromatography and color reactions (ninhydrin and SAKAGUCHI: negative) suggested that $B_{1'}$ was the simple amide of bleomycinic acid. Ammonolysis of bleomycinic acid 3-benzoylaminopropyl ester⁵ gave bleomycinic acid amide which was identical with bleomycin $B_{1'}$.

The terminal amine of B_4 (1) was isolated as a hygroscopic crystalline sulfate 270~272°C (dec.). Found: C, 30.95; H, 7.45; N, 24.14; O, 25.44; S, 11.90. Calcd. for $C_{10}H_{25}N_7 \cdot \frac{3}{2}H_2SO_4$ $\cdot^{1}/_{2}H_{2}O$ (MW 398.5): C, 30.06; H, 7.32; N, 24.55; O, 26.03; S, 12.04. VAN SLYKE nitrogen analysis, Found: 3.20%. Calcd. for presence of one amino group: 3.50 %. Potentiometric titration showed the presence of one mole of amino group (pKá 10.2, equivalent weight 377) and strongly basic functions over pKá 12. Compound 1 gave positive ninhydrin, SAKAGUCHI and DRAGENDORFF reactions. The NMR spectrum of 1 in deuterium oxide (external TMS reference) suggested the presence of two 1, 4-di-N-substituted tetramethylene carbon skeletons: δ 2.12 (multiplet, 8 protons), 3.56 (triplet, 2 protons) and 3.70 (multiplet, 6 protons). Hydrolysis of 1 with 1 N NaOH at 105°C for 45 hours gave 1, 4-diaminobutane, ammonia and a new amine (2). Compound 2 gave positive ninhydrin

^{*} Part X of this series: J. Antibiotics 26: $109 \sim$ 111, 1973

and negative SAKAGUCHI and DRAGENDORFF reactions. Compound 2 was isolated as the crystalline dihydrochloride, 171°C (dec.). Found: C, 38.72; H, 8.92; N, 19.70; Cl, 25.89. Calcd. for $C_{g}H_{22}N_{4}O\cdot 2HC1$: C, 39.27; H, 8.79; N, 20.36; Cl, 25.77. VAN SLYKE nitrogen analysis, Found: 9.70%. Calcd. for presence of two amino groups: 10.18 %. The NMR spectrum suggested that it has a synmetrical structure: δ 2.07 (multiplet, 8 H), 3.48 (triplet, 4 H), 3.58 (triplet, 4H). The IR spectrum (KBr) showed absorptions at 1645 and 1580 cm⁻¹. Further alkaline hydrolysis of 2 gave more than one mole of 1, 4-diaminobutane. DRAGENDORFF reaction is positive for 1, 3-disubstituted guanidine. So, 1 and 2 were determined to be 1-(4-aminobutyl)-3-(4-guanidinobutyl)-guanidine and N, N'-bis-(4-aminobutyl)-urea, respectively.

There are three basic functions through which spermidine, the terminal amine of A_5 , could connect with bleomycinic acid. Bleomycin A5 was treated with nitrous acid followed by acid hydrolysis. The deaminospermidine was isolated as the crystalline picrate, m.p. $166 \sim$ 167°C. One of the three structures, 4-(3aminopropylamino)-butanol (3), 3-(4-aminobutylamino)-propanol (4) and 3-(4-hydroxybutylamino)-propanol (5), could be expected depending on the types of the linkage. Compound 5 was excluded because the paper electrophoretic behaviour indicated that the deaminospermidine is a dibasic amine. Compounds 3 and 4 were synthesized and the melting points of the picrates were 166~167°C and 153~154°C, respectively. The deaminospermidine was identical with 3 by chromatographic and IR spectroscopic comparisons with the synthetic material. Thus, the primary amino group on the trimethylene chain of spermidine is involved in the linkage. This finding suggested that transformation of A₅ to $A_{2'}$ -b might be possible by enzyme degradation. Copper-free bleomycin A5 was dissolved in

0.1 M phosphate buffer at pH 6.8 and incubated with freeze-dried cells of *Serratia marcescens* IAM-1223, which has been known to cleave spermidine into 1, 3-diaminopropane and 4aminobutyraldehyde⁸⁾. After incubation for 70 hours at 37°C, the product was purified by CM-Sephadex chromatography and identified with $A_{2'}$ -b.

> Akio Fujii* Tomohisa Takita Kenji Maeda Hamao Umezawa

Institute of Microbial Chemistry Kamiosaki, Shinagawa-ku, Tokyo, Japan *Research Laboratory Nippon Kayaku Co. Ltd. Shimo, Kita-ku, Tokyo, Japan (Received April 5, 1973)

References

- FUJII, A; T. TAKITA, K. MAEDA, & H. UME-ZAWA: New components of bleomycin. J. Antibiotics 26: 396~397, 1973
- UMEZAWA, H.: Natural and artificial bleomycins: Chemistry and antitumor activities. Pure & Appl. Chem. 28: 665~680, 1971
- 3) TAKITA, T.; Y. MURAOKA, T. YOSHIOKA, A. FUJII, K. MAEDA & H. UMEZAWA: The chemistry of bleomycin. IX. The structures of bleomycin and phleomycin. J. Antibiotics 26: 755~ 758, 1973
- 4) TAKITA, T.; Y. MURAOKA, S. OMOTO, G. KOYAMA, A. FUJII, K. MAEDA & H. UMEZAWA: Chemical studies on an antitumor antibiotic bleomycin A₂. Progress in Antimicrobial and Anticancer Chemotherapy Vol. 2, pp. 1031~ 1036, 1960
- 5) TAKITA, T.; A. FUJII, T. FUKUOKA & H. UMEZAWA: Chemical cleavage of bleomycin to bleomycinic acid and synthesis of new bleomycin. J. Antibiotics 26: 252~254, 1973
- BACHRACH, U.: Spermidine oxidase from Serratia marcescens. J. Biol. Chem. 237: 3443~ 3448, 1962